Table of Contents:

1. Background ... 4
2. Primary Objective ... 4
3. Key Message .. 4
4. Insulin Pump Terminology .. 5
5. Procedure for the Safe Self-Management of Insulin Pump Therapy in Hospital 7
 Steps for Safe Self-Management of Insulin Pump in Hospital... 7
6. Algorithm for Assessing Self-Management of Insulin Pump in Hospital... 8
7. Criteria for Self-Management of Insulin Pump .. 9
8. Self-Management Terms for and Expectations of Patients ... 10
9. Required Forms and Order Set for Self-Management of Insulin Pump Therapy in Hospital .. 12
 Patient Agreement to Self-Manage Insulin Pump In-Hospital ... 13
 Insulin Pump Information Sheet .. 15
 In-Hospital Orders for Self-Management of Insulin Pump.. 16
 Insulin Pump Therapy Patient Bedside Logbook .. 17
10. Guidelines for Management of Insulin Pump Therapy Emergencies ... 19
11. Algorithm for the Safe Use of Insulin Pump during Procedures and Surgery 22
13. Guidelines for Switching between Insulin Pump Therapy and Subcutaneous Insulin or IV insulin ... 24
 Switching from Insulin Pump to Subcutaneous (sc) Basal Bolus insulin ... 24
 Switching from Subcutaneous Basal/Bolus Insulin Back to Insulin Pump 25
 Switching from IV Insulin Back to Insulin Pump .. 26
14. Guidelines for Managing the Insulin Pump in a Pregnant Patient .. 27
Appendix 1: Safer Practice Notice, Insulin Pump Therapy ... 29
Appendix 2: Safer Practice Notice, Home Glucose Monitoring Devices ... 30
Appendix 3: IPT Working Group Members and Content Contributors ... 31
Appendix 4: References .. 32
Appendix 5: Provincial In-Patient Diabetes Management Initiative Pictogram 33

We would like to acknowledge the numerous individuals who had input into developing these guidelines including: Adult and Pediatric Endocrinologists, General Internal Medicine Specialists, Anesthesiologists, Diabetes Educators, Obstetricians, Patients, Nurses, Dietitians, Pharmacists, and Emergency Department clinicians (see Appendix 3 for working group membership).
1. Background

Insulin pump therapy use is increasing in Alberta. The Alberta Health Insulin Pump Therapy Program (AH IPT), launched June 1, 2013. For more information on the AH IPT program and eligibility criteria, please visit: Specialized drug benefits | Alberta.ca. With growing pump use, health care providers in hospital and emergency settings will see increasing numbers of individuals using pump therapy.

These guidelines have been created by the Diabetes Obesity Nutrition Strategic Clinical Network™ (DON SCN™), and the provincial Insulin Pump Therapy (IPT) working group. They have been developed to:
1. assist providers (including non-diabetes specialists) in caring for patients with insulin pumps safely and effectively during procedures and hospital encounters.
2. support patients already using an insulin pump to continue to use their pumps in hospitals across Alberta, where appropriate, and advocate for self-management (by the patient or family member).
3. provide guidance to clinicians in the hospital environment on how to transition the patient to alternate insulin therapy, when the patient is unable to self-manage with their insulin pump.

The safe management of Insulin Pump Therapy in acute care guidelines are part of a larger Diabetes Inpatient Management initiative (see Appendix 5).

2. Primary Objective

Patient Safety

To ensure that patients with Type 1 diabetes on the insulin pump are managed in a safe and effective manner during procedures and hospital encounters

3. Key Message

“If pump stopped, must replace basal insulin within 2 hours to prevent Diabetic Ketoacidosis (DKA)”
4. Insulin Pump Terminology

Key Message: “If pump stopped, must replace basal insulin within 2 hours to prevent Diabetic Ketoacidosis (DKA)”

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous subcutaneous insulin infusion (CSII) pump (also known as insulin pump)</td>
<td>A battery operated programmable device that delivers only rapid-acting insulin 24 hours a day. The insulin is held in a reservoir and is delivered through a removable soft cannula (or needle) inserted into the subcutaneous layer of the skin, which is changed by the patient every 48-72 hours, or sooner as needed. With most pumps, this cannula is connected to a plastic tubing (infusion set) that is attached to the pump where the insulin is held. Other pumps use an insulin-containing pod taped directly to the skin (the pod holds the insulin and a handheld device is used for programming the pump). The insulin pump is programmed to deliver basal and bolus insulin.</td>
</tr>
<tr>
<td>Basal rate/basal insulin infusion</td>
<td>The pump delivers small amounts of insulin in a continuous fashion. This continuous background insulin infusion is measured in units/hour. Rates are variable and differ between individuals and differ across a 24-h period within the same individual. Some individuals have different basal profiles for different times or activities (e.g. work vs. non-work days, exercise, illness, etc.). Only rapid acting insulin is used in the pump. There is no long or intermediate-acting insulin used in the pump.</td>
</tr>
<tr>
<td>Bolus insulin</td>
<td>This is the amount of insulin given for a meal or snack. The patient determines this dose based on the estimated amount of carbohydrates to be consumed for that meal/snack and is calculated from their individual Insulin:Carbohydrate ratio (ICR). EXAMPLE: ICR 1:10 = 1 unit of insulin/10g of carbohydrate</td>
</tr>
<tr>
<td>Correction insulin (and Insulin Sensitivity Factor)</td>
<td>The anticipated amount of insulin needed to correct for hyperglycemia. This is based on the Insulin sensitivity factor (ISF). Individualized ISF allows calculation of a correction dose expected to reduce glucose by X mmol/L. EXAMPLE: ISF = 2.5, 1 unit of insulin should reduce glucose by 2.5 mmol/L</td>
</tr>
<tr>
<td>Partial (hybrid) closed loop pumping</td>
<td>Partial (hybrid) closed loop insulin pumps are integrated with Continuous Glucose Monitor (CGM) devices. This technology is rapidly growing and changing. The artificial intelligence algorithms in these pumps use the data from CGM to automatically adjust basal insulin without the user’s interaction. Bolus insulin is determined by the user. Some manufacturers have Health Canada approved devices. Looping: Individual user develops their own app and algorithm to integrate an existing insulin pump, CGM, and single board computer, Not Health Canada approved.</td>
</tr>
</tbody>
</table>
Continuous Glucose Monitoring System (CGM)

Monitors interstitial glucose values. Data is intended to provide information related to trends in glycemic management. A glucose sensor (small electrode) is inserted under the skin and measures interstitial glucose every 1-5 minutes. The readings are sent wirelessly to a device, either automatically or manually by scanning the sensor with a reader. There are two major types of CGM (real-time CGM or intermittent scanned CGM).

Interstitial glucose readings lag behind blood glucose readings by 5-15 minutes and results can be inaccurate when glucose levels change rapidly (after treating a low BG or after a meal). Therefore, CGM results don’t always match capillary (fingerstick) blood glucose readings. Conditions common to the hospital population may impact the accuracy of glucose sensors.

Some pumps have the ability to integrate a CGM with the insulin pump, which is able to:
1) Assess interstitial glucose every 5 min
2) Alert the user of high or low glucose readings
3) Alert the user of rapid changes in glucose
4) Temporarily suspend insulin delivery if a low glucose alert does not result in user acknowledgement. CGM may be in use without the alert or suspend features enabled.
5) Some pumps are able to respond to the CGM glucose readings and adjust the basal rate continuously (partial closed loop pumps).

This technology is rapidly growing and changing. At the present time and for most CGM available, the glucose readings provided are used to prompt capillary glucose testing and rate of change indicators can aid user in insulin self-adjustment. Currently this technology does not eliminate the need for confirmation of glucose by capillary testing prior to insulin adjustment for most available CGM.

Real-Time CGM (rtCGM)

Real-time CGMs (rtCGM) e.g. Dexcom and Medtronic have a transmitter attached to the sensor to continuously send glucose results to a reading device (this maybe the insulin pump, a stand alone receiver or an app on a smartphone/watch). For some, capillary (fingerstick) blood glucose readings are required for calibration.

Intermittent Scanned Continuous Glucose Monitor (isCGM)

Intermittent Scanned CGMs (isCGM) e.g., Flash; the person with diabetes manually scans the isCGM sensor with a handheld reader to see current and stored results.

First generation isCGM does not have automated alarms for when glucose levels reach certain limits. But the next generation one does.

Capillary (fingerstick) blood glucose testing is not needed for calibrations but is needed at other times (to confirm hypoglycemia and determine insulin management).
5. Procedure for the Safe Self-Management of Insulin Pump Therapy in Hospital

Purpose: To ensure safe and effective administration of insulin for patients with diabetes using their own external continuous subcutaneous insulin pump during procedures and hospital encounters.

Enacted by: Nurse, MD or other prescriber

Steps for Safe Self-Management of Insulin Pump in Hospital

1) MD or prescriber must assess patient’s ability to self-manage with the insulin pump using the following tools:
 a) Algorithm for Assessing Self-Management of Insulin Pump in Hospital (see Section 6)
 a. For Covenant Health sites the SAM procedure is included with this tool.
 b) Criteria for Self-Management of Insulin Pump (see Section 7)
 c) Self-Management Terms for and Expectations of Patients (see Section 8)
 a. For Covenant Health sites the SAM procedure is included with this tool.

2) If a patient is appropriate for self-management of the insulin pump in hospital:
 a) Patient (guardian/caregiver if under age 18) must read, agree, and sign the **Patient Agreement to Self-Manage Insulin Pump In-Hospital** (see Section 9). The completed form is placed (scanned) into chart.

 b) Patient (guardian/caregiver if under age 18) must complete the **Insulin Pump Information Sheet** (AHS form # 20114; Covenant Health form #CV-1107) (see Section 9). The completed form is placed (scanned) into chart.

 c) MD or prescriber must complete the **In-Hospital Orders for Self-Management of Insulin Pump** (Connect Care or AHS bond form # 20102 or AHS NCR form # 20976 or SCM order set OR Covenant Health PMOS form CV-1105) (see Section 9). The completed form is placed into chart.

 d) Patient (guardian/caregiver if under age 18) must complete the **In Hospital Insulin Pump Therapy Patient Bedside Logbook** daily (AHS form #20189 or Covenant Health form CV-1109) (see Section 9). The completed form is placed (scanned) into the chart daily.

 e) Nurse to review and sign the **In Hospital Insulin Pump Therapy Patient Bedside Logbook** (AHS form #20189 or Covenant Health form #CV-1109) at the end of each shift. The completed form is placed (scanned) into chart daily.

 f) Nurse will test blood glucose (BG) as ordered (minimum 4 times daily before mealtimes and bedtime), document in the patient’s chart and will share result with patient.

3) The patient must be assessed daily by the most responsible physician or prescriber to ensure that they continue to meet criteria for self-management.

4) If they no longer meet criteria for self-management, they are to be switched to an alternate regime of insulin (see Section 13)
6. Algorithm for Assessing Self-Management of Insulin Pump in Hospital

Key Message: “If pump stopped, must replace basal insulin within 2 hours to prevent Diabetic Ketoacidosis (DKA)”

[Flowchart of Algorithm for Assessing Self-Management of Insulin Pump in Hospital]

- **Insulin Treated Diabetes?**
 - Yes
 - **On Insulin Pump?**
 - Yes
 - **Meets Criteria to Continue Pump?**
 - Yes
 - Patient May Continue to Use Pump
 - No
 - Stop Insulin Pump and Switch to Appropriate Alternate Insulin Prescription (Basal-Bolus or IV Insulin)
 - No
 - Alternate Insulin Regime (Home Regime, Basal-Bolus, or IV Insulin)
 - No
 - Continually Reassess

- No
 - On Insulin Pump? (Re-assess)
 - Yes
 - Meets Criteria to Continue Pump?
 - Yes
 - Patient May Continue to Use Pump
 - No
 - Stop Insulin Pump and Switch to Appropriate Alternate Insulin Prescription (Basal-Bolus or IV Insulin)
7. Criteria for Self-Management of Insulin Pump

Patient is able to self-manage if all of the following criteria are met:

(Most responsible health practitioner’s responsibility to assess)

1) Mentally
 a) Alert and oriented x 3

2) Physically
 a) Has no physical/dexterity limitations
 b) Alternatively, if patient unable to self-manage, a non-health system caregiver (i.e. family member/guardian) is available to provide support/assistance to manage insulin pump 24 hours/day

3) Medically stable

4) No identified reasons for pump discontinuation*

*Criteria for pump discontinuation:

1) Cognitive or psychological limitations
 a) Altered, deteriorating or fluctuating changes to state of consciousness and/or cognitive status, including use of medications that may interfere with cognition or may be sedating (e.g. narcotics)
 b) Mental status that interferes with the patient's ability to self-manage (e.g. if patient experiences suicidal thoughts, behaviours and/or has made attempt(s) to die by suicide)

2) Medical conditions:
 a) DKA, or persistent unexplained hyperglycemia
 b) Persistent/recurrent severe hypoglycemia
 c) Critically ill (sepsis, trauma) and needs intensive care
 d) Other inter-current illnesses where use of the insulin pump is risky or non-effective, as determined by the medical staff

3) Pump functionality or performance limitations:
 a) Pump not functioning
 i) Hyperglycemia fails to respond to appropriate action (bolus insulin)
 b) Insufficient pump supplies (the hospital can not provide insulin pump supplies)
 c) Physical limitations to using the insulin pump

4) The patient chooses not to or unable to participate in self-care or to agree to self-management terms

5) Non-health system guardian or caregiver support/assistance (for patients under 18), required to manage insulin pump, is not available 24 hours/day
8. **Self-Management Terms for and Expectations of Patients**
(All of the following must be met):

1) **Does not meet any criteria for discontinuation of pump** *(see Section 7)*

2) **Patient will be required to:**
 a) **Provide all pump settings** on the *Insulin Pump Information Sheet* *(AHS form # 20114 or Covenant Health CV-1107)* *(see Section 9)*
 i) Basal rate settings
 ii) Insulin:carbohydrate ratio (ICR) settings
 iii) Insulin sensitivity factor (ISF) settings
 iv) Average total daily dose, percent basal
 a) Medtronic: main menu>utilities>daily totals
 b) Omnipod: home screen>my records>insulin delivery
 c) Tandem: home screen>options>history>pump history
 d) Ypsomed: home screen>basal rate icon>review basal program
 v) Active insulin on board and glucose targets
 vi) If using auto-off feature
 vii) If using a Continuous Glucose Monitor (CGM) sensor:
 a) report if low glucose suspend is on or off
 b) report if using automode with partial closed loop insulin pump *(Medtronic G670, G770, Tandem t-slim)*
 c) Report if using other non-Health Canada approved algorithms

b) **Provide all necessary supplies to run insulin pump** *(no supplies provided by AHS or Covenant Health)*
 i) Insulin pump
 ii) Insulin cartridge (reservoir or pods)
 iii) Tubing and infusion sets
 iv) Batteries (plus extra) for the pump
 v) Dressings (if applicable)
 vi) Insulin – only if non-formulary *[glulisine (Apidra®)]*

c) **Change the infusion set every 48-72 hours, or sooner as needed for:**
 i) Skin problems
 ii) Two blood glucose readings greater than 14.0 mmol/L in 4 hours
 iii) Immediately if BG is greater than 14.0 mmol/L and positive for ketones

d) **Allow testing of blood glucose (BG) by hospital staff** a minimum 4x/day *(prior to meals and bedtime)* using hospital blood glucose *(BG)* meter
 i) you may test more often using your own BG meter/continuous glucose monitor*(CGM)*
 ii) if using a home BG meter/continuous glucose monitor*(CGM), you must still allow hospital BG meter testing. See *Appendix 2.*
e) Allowing hospital staff to test ketones if blood glucose values are above 14.0 mmol/L. Check for serum/capillary ketones or urine ketones if BG values above 14.0 mmol/L.

f) Complete Insulin Pump Therapy Patient Bedside Logbook (AHS form #20189 or Covenant Health CV-1109) including CBG results, ketone testing results, meal bolus and correction doses given, basal rate, infusion set changes and when pump suspended/reconnected.

g) Patient must contact nursing staff if (any of the following situations arise):
 i) Experiencing any signs and symptoms of low blood glucose
 ii) Blood glucose below 4.0 mmol/L
 iii) Blood glucose above 14.0 mmol/L
 iv) Pregnant patient, when the majority of blood glucose readings are above 7.0 mmol/L
 v) There is a problem with their pump and/or if they have called the pump company’s 24 hour “1-800 assistance line”
 vi) If they feel they can no longer self-manage the pump

3) Patient understands that the pump may be discontinued and a different method of insulin delivery will be provided for any of the following:

 a) Physician or Nurse Practitioner’s order

 b) Not physically, emotionally or mentally capable of managing the insulin pump at the time

 c) Procedures with expected electromagnetic field exposure:
 i) Radiologic procedures (other than ultrasound)
 ii) MRI (NOTE: remove metal cannula for MRI – found on some pump insertion sets and all CGM systems)
 iii) CT scan
 iv) Nuclear Stress Test (just for the scan, not the exercise component)
 v) PET scans
 vi) Cardiac catheterization
 vii) Procedures requiring a general anesthetic
 viii) Electric shock for defibrillation (cardioversion)

 d) Other reasons deemed necessary by attending physician or medical staff where the use of the insulin pump is risky or non-effective

 e) The patient chooses not to or unable to participate in self-care or to agree to self-management terms
9. Required Forms and Order Set for Self-Management of Insulin Pump Therapy in Hospital

The following four documents / forms are required when the patient is self-managing their insulin pump in the hospital:

1. **Patient Agreement to Self-Manage Insulin Pump In-Hospital**
 a. (AHS form # 20369 OR Covenant Health APPENDIX A - Self Administration of Medications (SAM) Patient Assessment Tool and Covenant Health
 b. Covenant Health APPENDIX B - Self-Administration of Medication (SAM) Patient Information Pamphlet for Insulin Pump Therapy (IPT)
 c. Covenant Health APPENDIX C - Self Administration of Medications (SAM) Patient Agreement Consent

 Completed by patient (guardian/caregiver if under age 18) and placed on the patient chart. See Section 9 or for a printable form:

2. **Insulin Pump Information Sheet** (AHS form # 20114 or Covenant Health form CV-1107)

 Completed by patient (guardian/caregiver if under age 18) and placed on the patient chart. See Section 9 or for a printable form:

3. **In-Hospital Orders for Self-Management of Insulin Pump**

 Completed by MD or other prescriber and placed on the patient chart. See Section 9 or for a printable form:
 - AHS Bond form # 20102 (AHS NCR form # 20976) http://www.albertahealthservices.ca/frm-20102.pdf
 - Covenant Health form # CV-1107
 - Paper based order form with carbon copy available for order through data group in each Zone

 OR

 In-Hospital Orders for Self-Management of Insulin Pump (SCM users)

 Completed by the MD or other prescriber through Sunrise Clinical Manager electronic medical record in Calgary Zone

 OR

 Insulin Pump Therapy (adult) OR Insulin Pump Therapy (pediatric) (Connect Care users)

 Completed by the MD or other prescriber through Connect Care electronic medical record ordering procedures

 OR

 Covenant Health PMOS form # CV-1105 (Covenant Health Site)

 Completed by MD or other prescriber and placed on the patient chart. See Section 9.

4. **Insulin Pump Therapy Patient Bedside Logbook** (AHS form #20189 or Covenant Health form # CV-1109)

 Completed by patient (guardian/caregiver if under age 18). Nurse to sign at the end of every shift to confirm logbook has been completed. Nurse to review and file (scan) in patient chart daily. See Section 9 or for a printable form:
 - AHS form # 20189: http://www.albertahealthservices.ca/frm-20189.pdf
Patient Agreement to Self-Manage Insulin Pump In-Hospital

(To be read and signed by patient / guardian and placed in patient chart)

For your safety and optimal medical care during hospitalization, we request that you review this form outlining what is expected of you in hospital to self-manage your diabetes with your insulin pump. If you feel that you cannot carry out these responsibilities, we would like to treat your diabetes with insulin injections and/or intravenous insulin and discontinue the use of your insulin pump.

These are the responsibilities for self-management of your insulin pump during your hospital stay:

1. **Understanding the potential risk of using your insulin pump in the hospital:**
 a. high and low blood glucose
 b. diabetic ketoacidosis; and
 c. infection

2. **Completing the Insulin Pump Information Sheet** *(Form #20114)* which will provide all pump settings to your Physician or Most Responsible Health Practitioner.

3. **Providing all necessary supplies to run your insulin pump:**
 a. insulin pump
 b. insulin cartridge or pods
 c. tubing and infusion sets
 d. extra batteries for the pump
 e. dressings (if applicable); and
 f. insulin – only if non-formulary such as [glulisine (Apidra®)]

4. **Changing the infusion set every 48-72 hours or sooner as needed for:**
 a. skin problems; or
 b. if two blood glucose readings are greater than 14.0 mmol/L (with trace/negative ketones) in 4 hours
 c. immediately if blood glucose reading greater than 14.0 mmol/L and **positive** for ketones

5. **Allowing hospital staff to test your blood sugar a minimum of 4 times per day (prior to meals and bedtime) using a hospital blood glucose meter.**
 a. you may test more often using your own home blood glucose meter/flash glucose monitor/continuous glucose monitor(CGM)
 b. if using a home blood glucose meter/flash glucose monitor(Flash)/continuous glucose monitor(CGM), you must still allow hospital meter testing

6. **Allowing hospital staff to test ketones** if blood glucose values are greater than 14.0 mmol/L

7. **Completing the Insulin Pump Therapy Patient Bedside Logbook** *(Form #20108)* daily

8. **Informing nursing staff if:**
 a. you have any signs and symptoms of low blood sugar
 b. blood sugar less than 4.0 mmol/L
 c. blood sugar 14.0 mmol/L or greater
 d. you are pregnant and the majority of your sugars are over 7.0 mmol/L
 e. you have a problem with your pump and/or if you called the pump company’s 24 hour “1-800 assistance line”, or
 f. you feel like you can no longer self-manage your pump
Patient Agreement to Self-Manage Insulin Pump In-Hospital

9) Understanding that your insulin pump may be discontinued and a different insulin delivery provided for if any of the following occurs:
 a) Physician or Nurse Practitioner's order
 b) you are not physically, emotionally or mentally capable of managing the insulin pump at the time
 c) undergoing a radiology procedure other than an ultrasound
 d) having a procedure under a general anesthetic
 e) other reasons deemed necessary by your attending physician or most responsible health care provider where the use of the insulin pump is risky or non-effective
 f) you choose not to or are unable to participate in self-care or to agree to self-management terms

☐ I have read what is expected of me to self-manage my diabetes using my insulin pump in hospital. I am satisfied with and understand the information I have been given, and I agree to fulfill the self-management responsibilities.

<table>
<thead>
<tr>
<th>Patient/Guardian (print)</th>
<th>Patient/Guardian (sign)</th>
<th>Date (dd-Mon-yyyy)</th>
</tr>
</thead>
</table>
Insulin Pump Information Sheet

(AHS form # 20114) To be completed by patient (guardian/caregiver if under age 18) and placed on the patient chart.

Insulin Pump Information Sheet

<table>
<thead>
<tr>
<th>Last Name (Legal)</th>
<th>First Name (Legal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferred Name</td>
<td>Date of Birth (DOB) (mm/dd/yyyy)</td>
</tr>
<tr>
<td>PHN</td>
<td>UR</td>
</tr>
<tr>
<td>Administrative Gender</td>
<td>Male</td>
</tr>
</tbody>
</table>

Pump Information

- **Insulin Type** (check one)
 - Ispro (Humalog®)
 - Aspart (Novorapid®)
 - Other (specify)

- **Do you use a CGM or Flash?**
 - Yes
 - No

- **Low Glucose Suspend?**
 - On
 - Off
 - Not Applicable

- **Auto Off feature**
 - On
 - Off

- **Low glucose suspend after ______ hours**

- **Customer Support Phone**
 - Automode
 - Algorithm

Typical Total Daily Dose of Insulin (units/24 hours)

Pump Settings

- **Basal Rate(s) units/hr**
 - Time (hh:mm)
 - Rate

- **Insulin:Carbohydrate Ratio (ICR)**
 - Time (hh:mm)
 - 1 unit/gram carb

- **Correction/Insulin Sensitivity Factor(s) (ISF)**
 - Time (hh:mm)
 - 1 unit lowers glucose by this amount (mmol/L)

- **Target Glucose mmol/L**
 - Time (hh:mm)
 - Glucose

Insulin Active Time (hrs)

Bolus Insulin (Not using ICR)

- **Units**
 - With Breakfast/Feed at Time (hh:mm)
 - With Lunch/Feed at Time (hh:mm)
 - With Dinner/Feed at Time (hh:mm)
 - With Other at Time (hh:mm)

- **Units**
 - Patient/Guardian/Caregiver Name (print)

- **Patient/Guardian/Caregiver Signature**

- **Date (yyyy-Mon-dd)**

IPT terminology on the reverse of form.
In-Hospital Orders for Self-Management of Insulin Pump
(AHS form # 20102 or AHS NCR form # 20976 or SCM Insulin Pump Therapy Order Set or CC Insulin Pump Therapy Order Set Adult OR Pediatric) **Completed by MD or other prescriber**

Guidelines for the Safe Management of Insulin Pump Therapy in Hospital

1. **Discontinue all previous insulin orders**
2. **Orders marked with ☑️ are active by default, unless crossed out and initialed by prescriber. Boxed orders (☐) require prescriber check mark (☑️) to be initiated**

- Patient/Guardian has read and accepted the terms of the Patient Agreement to Self-Manage Insulin Pump In-Hospital (Form 20369)
- Patient/Guardian to sign the Patient Agreement to Self-Manage Insulin Pump In-Hospital (Form 20369). Completed form to be placed on chart.
- Patient (Guardian/Caregiver if under age 18) to complete Insulin Pump Information Sheet (Form 20144)
- Patient (Guardian/Caregiver if under age 18) to complete Insulin Pump Therapy Bedside Logbook daily (Form 20189)
- Nurse to review and sign Insulin Pump Therapy Bedside Logbook (Form 20189) at the end of each shift.
- Completed form to be placed into chart daily
- Do not stop or suspend the insulin pump unless physician provides alternative regime of insulin. (If pump stopped, basal insulin must be replaced within 2 hours to prevent Diabetic Ketoacidosis (DKA))

Bedside Blood Glucose Monitoring (use hospital meter)
- Before meals and bedtime
- 2 hours after site change
- 0300 hours
- Every ___ hours
- Other (specify)___

Insulin Type (Choose One, for use in pump)
- lispro (Humalog®)
- aspart (Novorapide®)
- Other (specify)___

Hyperglycemia
- If blood glucose is over 14.0 mmol/L, check ketones. If positive for ketones, patient to self administer correction insulin by syringe OR pen AND change infusion set. Nurse to notify most responsible health practitioner.

Hypoglycemia
- Do not remove or stop Insulin Pump Therapy without Physician Order
- Treat according to Hypoglycemia protocol

Other Orders
- Patient to change site every ___ day(s) (usually every 2-3 days), starting Date (dd-mon-yyyy)___

Pump Settings
- Patient to manage pump according their specified settings
- Refer to Insulin Pump Information Sheet (Form 20144) and Insulin Pump Therapy Bedside Logbook daily (Form 20189)

Physician Name (print)
Physician Signature
Date (dd-mon-yyyy)
Time (hh:mm)

IPT criteria on back of paper-based order set
Insulin Pump Therapy Patient Bedside Logbook
(AHS form #20189) To be completed by patient (guardian/caregiver if under age 18)

1. Patient (Guardian/Caregiver if under 18) to fill out daily
2. Nurse to sign at the end of every shift to confirm logbook has been completed. Nurse to review and file in patient chart file in patient chart daily.

Date (dd-Mon-yyyy)

<table>
<thead>
<tr>
<th>Time</th>
<th>Blood glucose (mmol/L)</th>
<th>Ketones positive</th>
<th>Carbohydrates (grams)</th>
<th>Meal Bolus & Correction dose (units)</th>
<th>Basal rate (units/hr)</th>
<th>Site/set change</th>
<th>Pump suspended/removed</th>
<th>Pump reconnected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0800h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0900h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1100h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1200h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1300h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1400h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1500h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1600h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1700h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1800h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1900h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2000h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2100h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2200h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2300h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2400h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0100h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0200h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0300h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0400h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0500h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0600h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0700h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments

Signatures

Nurse signature (end of shift) ____________________

Nurse signature (end of shift) ____________________

Nurse signature (end of shift) ____________________

2018(2021-06)
Insulin Pump Therapy Patient Bedside Logbook

1. Patient (Guardian/Caregiver if under 16) to fill out daily.
2. Nurse to sign at the end of every shift to confirm logbook has been completed. Nurse to review and file in patient chart file in patient chart daily.

<table>
<thead>
<tr>
<th>Date (dd-Mon-yyyy)</th>
<th>0800h</th>
<th>0900h</th>
<th>1000h</th>
<th>1100h</th>
<th>1200h</th>
<th>1300h</th>
<th>1400h</th>
<th>1500h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood glucose (mmol/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ketones positive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbohydrates (grams)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meal Bolus & Correction dose (units)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basal rate (units/hr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site/set change</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump suspended/removed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump reconnected</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1600h</th>
<th>1700h</th>
<th>1800h</th>
<th>1900h</th>
<th>2000h</th>
<th>2100h</th>
<th>2200h</th>
<th>2300h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood glucose (mmol/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ketones positive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbohydrates (grams)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meal Bolus & Correction dose (units)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basal rate (units/hr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site/set change</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump suspended/removed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump reconnected</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2400h</th>
<th>0100h</th>
<th>0200h</th>
<th>0300h</th>
<th>0400h</th>
<th>0500h</th>
<th>0600h</th>
<th>0700h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood glucose (mmol/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ketones positive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbohydrates (grams)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meal Bolus & Correction dose (units)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basal rate (units/hr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site/set change</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump suspended/removed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump reconnected</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments

Signatures
- Nurse signature (end of shift ________/______)
- Nurse signature (end of shift ________/______)
- Nurse signature (end of shift ________/______)

20189(2021-36)
10. Guidelines for Management of Insulin Pump Therapy Emergencies

Key Message: “If pump stopped, must replace basal insulin within 2 hours to prevent Diabetic Ketoacidosis (DKA)”

Potential insulin pump emergencies are managed in a similar manner to any other patient with type 1 diabetes. These guidelines are recommended for use in emergent situations, typically when patients are presenting to emergency departments or urgent care centres.

1) DIABETIC KETOACIDOSIS (DKA) can occur very quickly (2-4 hours) if insulin delivery is disrupted for any reason because:
- The insulin pump only delivers rapid acting insulin (continuously to cover basal requirements and in bolus fashion to cover meals and correct for high blood glucose)
- Patients on the insulin pump do not use intermediate or long-acting insulin

Pump patients feeling unwell require immediate assessment for DKA:
- Typical symptoms of DKA include lethargy, nausea, vomiting, abdominal pain, intercurrent illness
- Perform assessment of hydration status
- Urgent lab testing for blood glucose, serum electrolytes, capillary blood gas and urine/serum ketones
- If patient on an SGLT2 inhibitor (canagliflozin (Invokana), dapagliflozin (Forxiga), empagliflozin (Jardiance), DKA may be present even if glucose is within normal range
- AHS and Covenant Health employees please see AHS Clinical Knowledge Topics:
 - Diabetic Ketoacidosis, Adult - Emergency Department (DKA, Diabetes) (ahsnet.ca)
 - Diabetic Ketoacidosis, Adult - Inpatient (ahsnet.ca)
 - Diabetic Ketoacidosis, Pediatric - Emergency and Inpatient (ahsnet.ca)

Treatment of hyperglycemia/DKA:
- If DKA is confirmed, treat as one would for any individual with Type 1 diabetes, including IV insulin
- Do not rely on the insulin pump for insulin delivery
- Disconnect/suspend pump and remove insertion set
- If severe hyperglycemia, but not in DKA, and there is any concern regarding the integrity of the pump system, administer insulin via another route (SC or IV)

2) SEVERE HYPOGLYCEMIA
- Suspend or disconnect the pump until blood glucose readings are above 6.0 mmol/L
- Once above 6.0 mmol/L, restart the insulin pump
- The patient will quickly become insulin deficient if the pump is disconnected for >2 hours
- Following a severe hypoglycemic episode, instruct patient to reduce both the basal and bolus doses of insulin by approximately 20% for several days

3) INFUSION SITE ABSCESSE OR INFECTION
Most are secondary to Staphylococcus aureus
- Remove and discard infusion set and reservoir
- Have patient insert new infusion set at a new site, prepped with an antiseptic wipe
- Incise and drain abscess, send debrided material for culture and susceptibility testing
- Treat with cloxacillin
- In high resistance areas, use antibiotic with methicillin-resistant *Staphylococcus aureus* (MRSA) coverage (Refer to local antibiogram)

NOTE: If the patient on insulin pump therapy is treated for any of the above 3 issues in the Emergency Department and not admitted to hospital, they should be instructed to contact their Diabetes Insulin Pump Clinic or their Diabetes in Pregnancy Clinic (if applicable) for reassessment of the insulin regimen and further pump education. You are asked to consider sending a referral to an approved insulin pump clinic in your area to ensure that follow up occurs.

Current referral information to approved insulin pump clinics is available at: http://www.health.alberta.ca/services/insulin-pump-therapy-program.html

If assistance is required in managing a pump-related emergency, please consult endocrinology on call (if available) at your site, or the patient’s diabetes physician. If the patient requires technical assistance with their insulin pump they can contact the 1-800 number on the back of the pump.

4) **Cardiac Arrest / Code Blue**
 a) Remove the insulin pump attachment at the skin (pod or tubing attachment) and place the pump in safe and dry place with patient’s name and ID #.
 b) Infusion set with tubing to be discarded in a sharps container. Pod attachment is to stay with the handheld pump device.
 c) Ideally, the insulin pump should be SUSPENDED as soon as possible (by the patient if possible or by a family member) since the flow of insulin will continue and this moisture could damage the pump. Should the patient or caregiver be unable to suspend the pump, contacting the 1-800 number on the back of the pump will provide support on “how to” suspend the pump.

Examples of infusion set(s) associated with the insulin pump (with tubing)

© Alberta Health Services (2018) **Insulin Pump Therapy**
Screaming Pod

Screaming pods occur when the pod cannot be deactivated by the handheld device (PDM). Screaming pods can be silenced with a paperclip. Insert a paperclip into the small hole on the bottom (the side opposite where the cannula is) of the pod as shown. Push the paperclip in until you hear a “little click”, that “click” is breaking the circuit that silences the audible scream.

These guidelines are available online at: http://guidelines.diabetes.ca/Browse/Chapter15
11. Algorithm for the Safe Use of Insulin Pump during Procedures and Surgery

Key Message: “If pump stopped, must replace basal insulin within 2 hours to prevent Diabetic Ketoacidosis (DKA)”

- **Local Anesthesia Or Conscious Sedation (duration of cognitive impairment less than 2 hours)**
 - Patient May Continue to Use Pump

- **Conscious sedation (duration of cognitive impairment more than 2 hours)**
 - Stop Insulin Pump and Switch to Appropriate Alternate Insulin Prescription (Basal-Bolus Regimen or IV Insulin)

- **General Anesthesia**
 - Short/Medium Duration
 - Stop Insulin Pump and Switch to IV Insulin

- **Long (major risk of hypotension and hemodynamic instability)**
 - Stop Insulin Pump and Switch to IV Insulin

This option applies only to patients who have a family member/caregiver that is able and available to manage the insulin pump until the patient is no longer cognitively impaired and able to self-manage the insulin pump.
12. Guidelines for Managing Pump during Radiologic Procedures

Key Message: “If pump stopped, must replace basal insulin within 2 hours to prevent Diabetic Ketoacidosis (DKA)”

The insulin pump (including pods) (see Section 4) and/or the continuous glucose monitoring system (rtCGM or isCGM: sensor and transmitter) should NOT be worn for procedures with expected exposure to electromagnetic field:
- Radiologic procedures (other than ultrasound)
- Interventional radiology
- MRI (NOTE: remove metal cannula for MRI – found on some pump insertion sets and CGM)
- CT scan
- Nuclear Stress Test (just for the scan not the exercise component)
- PET scan
- Cardiac catheterization
- Electric shock for defibrillation

If the procedure is less than 1 hour:
- Remove insulin pump* and CGMS and keep outside the procedure room in a safe and dry place with patient’s name and ID #
- Once procedure complete, patient will reconnect pump and check blood glucose with administration of a correction dose for hyperglycemia if required

If procedure 1-2 hours:
- The patient should administer a bolus dose before disconnecting the insulin pump
- The bolus dose is a calculation of the basal dose which would have been administered over the next 1-2 hours
 EXAMPLE: Procedure is 2 hours long
 – Basal rate at that time is 0.8 units/hour
 – The patient will administer 0.8 x 2 = 1.6 units as a bolus
- Remove pump* and/or CGM and keep outside the procedure room in a safe and dry place with patient’s name and ID #
- Once procedure complete, patient will reconnect pump and check blood glucose with administration of a correction dose for hyperglycemia if required

If procedure more than 2 hours:
- The insulin pump should be discontinued* and either basal bolus sc insulin or IV insulin should be initiated
- See “Guidelines for switching from insulin pump to basal/bolus insulin” (see Section 13)

*If/when the pump is removed, the flow of insulin will continue and this moisture could damage the pump. Therefore, have patient suspend pump and once reconnected after the procedure, the pump must be unsuspended.
13. Guidelines for Switching between Insulin Pump Therapy and Subcutaneous Insulin or IV insulin

Key Message: “If pump stopped, must replace basal insulin within 2 hours to prevent Diabetic Ketoacidosis (DKA)”

Switching from Insulin Pump to Subcutaneous (sc) Basal Bolus insulin

The calculations below will provide a safe transition between the insulin pump and subcutaneous basal/bolus insulin therapy. However, when transitioning between modes of insulin delivery, review of capillary glucose monitoring is required to assess the adequacy of the insulin doses provided and adjustments made based on these results.

If available at your site (for adults):

Use one of the following to enter orders for basal bolus insulin therapy:

- For non-electronic / paper based facilities:
 Basal Bolus Insulin Therapy (BBIT) Adult Inpatient Order Set (AHS form 19885 or Covenant Health CV-0701)
- For Calgary Zone SCM facilities:
 Basal Bolus Insulin Therapy Order Set
- For Connect Care facilities:
 Basal Bolus Insulin Therapy (BBIT) Order panel

BASAL Dose Calculation Options

1. Use current dose of total basal insulin administered over 24 hours to calculate the total basal daily dose (information found in the insulin pump basal history). Use a 3-day average to determine a total daily basal dose.

2. Administer this dose as glargine or detemir as single dose once/day or in equally divided doses twice daily. Alternatively, Humulin N can be administered twice daily if there is a contraindication to glargine or detemir.
 a. EXAMPLE: 20 units average total of basal insulin
 b. 20 units once daily OR 20 ÷ 2 = 10 units given twice daily (Breakfast and bedtime)

3. Discontinue insulin pump 2 hours after the first dose of basal insulin is administered (pen/syringe).

OR

1. Take average of total daily doses (TDD) (available on pump)

2. Divide by 2 to get the Total Daily Basal dose

3. Administer glargine or detemir as single dose once/day or in equally divided doses twice daily. Alternatively, Humulin N can be administered twice daily if there is a contraindication to glargine or detemir
 a. EXAMPLE: TDD = 60 units
 b. 60 ÷ 2 = 30 units Total Daily Basal dose
 c. 30 units once daily OR 30 ÷ 2 = 15 units given twice daily (Breakfast and bedtime)

4. Discontinue insulin pump 2 hours after the first dose of basal insulin is administered (pen/syringe).
BOLUS FOR MEALS Options

1) Patient may use their existing insulin:carbohydrate ratios (ICR)
 EXAMPLE: 1:10 means 1u of rapid insulin takes care of 10g of carbohydrate
 OR
2) If patient typically eating only 3 meals/day (no snacks), take half of usual total daily dose, divide by 3 and administer with meals
 EXAMPLE: TDD 60 units
 \[60 \div 2 = 30 \text{ units}\]
 \[30 \div 3 = 10 \text{ units with each meal}\]
 OR
3) If patient was typically eating 3 meals/day and between meal snacks, take half of usual total daily dose, divide by 4 and administer with meals
 EXAMPLE: TDD 60 units
 \[60 \div 2 = 30 \text{ units}\]
 \[30 \div 4 = 7.5 \text{ units (round to 7 or 8 units) with each meal}\]

CORRECTION INSULIN Options

1) Patient may use their existing insulin sensitivity factor (ISF)
 OR
2) Create a correction sliding scale based on their ISF
 EXAMPLE:
 a) ISF of 2 means 1 unit of rapid insulin will drop glucose by 2 mmol/L
 b) May create a correction sliding scale that administers 1 extra unit of rapid insulin for every 2 mmol/L above 8 mmol/L

<table>
<thead>
<tr>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0-8.0</td>
</tr>
<tr>
<td>No correction</td>
</tr>
<tr>
<td>8.1-10.0</td>
</tr>
<tr>
<td>1 unit rapid acting insulin sc</td>
</tr>
<tr>
<td>10.1-12.0</td>
</tr>
<tr>
<td>2 unit rapid acting insulin sc</td>
</tr>
<tr>
<td>12.1-14.0</td>
</tr>
<tr>
<td>3 unit rapid acting insulin sc</td>
</tr>
<tr>
<td>14.1-16.0</td>
</tr>
<tr>
<td>4 unit rapid acting insulin sc, check ketones</td>
</tr>
<tr>
<td>16.1-18.0</td>
</tr>
<tr>
<td>5 unit rapid acting insulin sc, check ketones</td>
</tr>
<tr>
<td>>18.0</td>
</tr>
<tr>
<td>notify MD, check ketones</td>
</tr>
</tbody>
</table>

OR

3) If available at your site (for adults); use:
 - For paper based facilities: Basal Bolus Insulin Therapy (BBIT) Adult Inpatient Order Set (AHS form 19885 or Covenant Health form CV- 0701)
 - For Calgary Zone SCM: Basal Bolus Insulin Therapy Order Set select a scale for “Correction for Hyperglycemia” based on the total daily dose (TTD) of insulin
 - For Connect Care facilities: Basal Bolus Insulin Therapy (BBIT) Order panel select a scale for “Correction for Hyperglycemia” based on the total daily dose (TTD) of insulin

Switching from Subcutaneous Basal/Bolus Insulin Back to Insulin Pump

1) If patient is capable and willing to self-manage, restart pump on original settings if appropriate or consult Diabetes Consult Service or Endocrinology to assist with rate adjustments
2) Discontinue all previous insulin orders
3) Restart pump at the time of the next scheduled dose of basal insulin to prevent insulin stacking. Instruct patient to consider a reduced temporary basal rate for the first 12 hours if they have been on twice daily basal insulin.

4) Check glucose 2 hours after pump restart to ensure site is working well

Switching from IV Insulin Back to Insulin Pump

1) If patient is capable and willing to self-manage, restart pump on original settings if appropriate or consult Diabetes Consult Service or Endocrinology to assist with rate adjustments

2) Continue IV insulin infusion for the first 2 hours of the pump restart to allow the formation of a subcutaneous depot of insulin

3) Patients in Diabetic Ketoacidosis (DKA) may be transitioned back to the pump after resolution of the diabetic ketoacidosis

4) Check glucose 4 hours after pump restart (2 hours after IV insulin stopped) to ensure site is working well
14. Guidelines for Managing the Insulin Pump in a Pregnant Patient

Key Message: “If pump stopped, must replace basal insulin within 2 hours to prevent Diabetic Ketoacidosis (DKA)”

Patients with Type 1 diabetes may be managed with the insulin pump during their pregnancy. They are followed closely as outpatients by a diabetes specialty team, including a diabetes specialist, nurse and dietitian, most often in a Diabetes in Pregnancy Clinic setting.

When a pregnant patient with diabetes on the insulin pump is admitted to hospital, it is imperative to consult the endocrinology consult service or diabetes specialty consult service (whoever manages diabetes in pregnancy in your hospital). Some hospitals may have specific pre-admission orders in place for the patient as well.

If patient is admitted antepartum:

1) Patient may be able to self-manage with the insulin pump, assuming they meets criteria for self-management (*see Assessment of Capability to Self-Manage)
2) Diabetic ketoacidosis (DKA) is associated with significant morbidity and mortality in the patient, and up to a 50% risk of mortality in the fetus. Therefore:
 a) Hyperglycemia with blood glucose above 14.0 mmol/L should prompt ketone testing (urine or serum)
 b) If positive for ketones and/or if they exhibit typical DKA symptoms, they should be assessed for DKA. (Perform assessment of hydration status and urgent lab testing for blood glucose, serum electrolytes, capillary blood gas and urine/serum ketones)
 c) If DKA confirmed, treat as one would treat anyone with Type 1 diabetes, including intravenous (IV) insulin.

If patient admitted for Labour and Delivery:

1) The patient may be able to continue the pump during labour and delivery with adequate planning and preparation and close follow-up during labour and delivery by their diabetes care team. This practice may vary by Zone, Hospital or care provider.
2) A well thought out and clear plan should be in place prior to admission.
3) If a plan is not in place, the patient should be switched to intravenous insulin, aiming for glucose between 4.0-7.0 mmol/L.
4) At any point during labour and delivery, if the patient is not able to self-manage (see Section 6) then the patient should be switched to intravenous insulin, aiming for glucose between 4.0-7.0 mmol/L.
5) After delivery, patient’s insulin requirements drop. They should reduce their insulin doses to the post-partum pre-specified settings suggested by the diabetes care team immediately. If a plan is not in place, please contact the diabetes care team immediately.
Post-partum:

1) If the patient was able to remain on the insulin pump through labour and delivery, they should reduce their insulin doses to the post-partum pre-specified settings suggested by their diabetes care team. If a plan is not in place, please contact the diabetes care team immediately.

2) If the patient was on IV insulin, the insulin pump may be resumed using the post-partum insulin dose settings pre-specified by the diabetes care team. Stop the IV insulin 2 hours after the pump is resumed.

3) Be aware that the dose of insulin will change based on the patient’s diet and whether or not the patient is breastfeeding. Therefore, frequent monitoring of blood glucose is indicated (4 to 8 times/day).

4) Follow-up after discharge should be with the patient’s diabetes in pregnancy care team.
Appendix 1: Safer Practice Notice, Insulin Pump Therapy

Safe Insulin Pump Therapy in Acute Care

Issue
Insulin pump therapy is becoming more common in the care of patients with type 1 diabetes. Insulin pumps deliver continuous subcutaneous rapid acting insulin. Patients do not receive intermediate or long acting insulin.

Severe hyperglycemia and/or Diabetic Ketoacidosis (DKA) can result when Insulin Pump Therapy is stopped for as little as 2-4 hours and insulin is not replaced - even if glucose values are normal or low when pump is discontinued.

Action
- If insulin pump is stopped, basal insulin must be replaced within 2 hours to prevent Diabetic Ketoacidosis (DKA)
- If DKA develops, it must be treated with IV insulin. The pump should not be used to deliver insulin. Follow Emergency department DKA protocol.
- If severe hyperglycemia, but not in DKA; and there is concern regarding the integrity of the pump system, discontinue the pump and administer insulin via another route (sc or IV)
- For severe hypoglycemia; suspend or disconnect pump. Once blood glucose above 6.0 mmol/L, insulin must be replaced (pump, sc, or IV)
- The insulin pump should be removed for all radiologic procedures, except ultrasound, due to exposure to electromagnetic fields. The pump should be discontinued, and sc or IV insulin treatment should be initiated before procedure, for any procedure longer than 2 hours, or requiring general anesthetic.
- If unfamiliar with insulin pump therapy; contact Endocrinology on-call, Certified Diabetes Educator, or your local Diabetes expert

Contact
Glenda Moore, Manager
Diabetes Obesity Nutrition (DON)
Strategic Clinical Network (SCN)
1-403-643-1847
Glenda.Moore@albertahealthservices.ca

Resources
Provincial resources (policy, guidelines and order set) are being developed as part of the DON SCN Diabetes Inpatient Management initiative. Current resources available:
- Calgary Zone insulin pump website: http://calgaryzone.ca/insulin-pumps

This material is intended for use only by Alberta Health Services staff/Medical and Midwifery staff. External readers should review the information in the context of their own environment to determine applicability. Alberta Health Services expressly disclaims all liability for the use of these materials, and for any claims, actions, demands or suits arising from such use. Further information about this and other Patient Safety Alerts and Safer Practice Notices can be found at http://www.albertahealthservices.ca/patient-safety
Appendix 2: Safer Practice Notice, Home Glucose Monitoring Devices

Link to AHS Safer Practice Notice: SPN: Safety Concerns regarding use of Home Glucose Monitoring Devices in Acute Care (albertahealthservices.ca)

Safer Practice Notice

Safety Concerns regarding use of Home Glucose Monitoring Devices in the Acute Care Setting

Issue

- There are several different types of glucose monitoring devices used by patients with diabetes in the community. Some test interstitial glucose, while others test blood glucose.
- CGM and Flash measure the glucose levels found in the interstitial fluid. Intersitial glucose results are not the same as a capillary or lab blood glucose results.
- Conditions common to the hospital population may affect sensor readings (CGM and Flash), rendering them inaccurate.
- Home glucose monitoring devices do not undergo the same quality assurance testing as the Point of Care Test (POCT) approved AHS blood glucose meter.
- If glucose results from home glucose monitoring devices are used, there is a risk of:
 - not responding to hypoglycemia or hyperglycemia in a timely fashion;
 - treating hypoglycemia when not necessary; and
 - inaccurate dosing of insulin or other diabetes medications.

27 October 2020

For Action By:

- Acute Care
- Emergency Departments
- Urgent Care
- Diagnostic Imaging
- EMS
- Nurses
- Physicians
- Pharmacists

The glucose value from the patient’s home glucose monitoring device should not be used to determine the administration/adjustment of insulin or other diabetes medication(s), or to determine the treatment for hypoglycemia.

Action

- Use the AHS POCT blood glucose meter to decide on insulin dose or adjustment of diabetes medication(s) in hospital.
- Before the treatment of hypoglycaemia or hyperglycaemia, the patient’s blood glucose must be checked with the AHS POCT blood glucose meter.
- Do not compare glucose results from the home glucose monitor to the AHS POCT blood glucose meter results.
- For patients who continue to use their home device(s), the glucose values from these devices should not be used to make treatment decisions.
- Remove CGM or Flash sensor prior to all diagnostic imaging procedures, except Ultrasonography.

Guidelines for the Safe Management of Insulin Pump Therapy in Hospital
Diabetes Obesity Nutrition SCN October, 2022
Appendix 3: IPT Working Group Members and Content Contributors

We would like to acknowledge the following individuals for their contributions to the creation of these resources / tools for the safe management of Insulin Pump Therapy in acute care:

Nicole Farwell, Ft. McMurray
Dr. Reeda Buni, Ft. McMurray
Dr. Surinder Khinda, Ft. McMurray
Carrie Mizera, Grande Prairie
Stuart Scott, CDM Team Lead, Grande Prairie
Dr. Robert Burris, Grande Prairie

Karen Johnston, Stollery, Edmonton
Katie Taylor, Stollery, Edmonton
Dr. Elizabeth Rosolowsky, Stollery, Edmonton
Cathy Bowles, Grey Nuns, Edmonton
Dr. Colin MacDonald, Grey Nuns, Edmonton
Dr. Peter Senior, UAH, Edmonton
Dr. Tammy McNab, UAH, Edmonton
Dr. Rose Yeung, UAH, Edmonton
Dr. Mahua Ghosh, Endocrinologist, Edmonton
Dr. Andrea Opgenorth, Endocrinologist, Edmonton

Lorelei Domaschuk, Red Deer
Dr. Dirk VanDerBerg, Red Deer
Dr. Meryl Hart, Red Deer

Dr. Julie McKeen, DCC, Calgary
Bev Madrick, DCC, Calgary
Sasha Wiens, DCC, Calgary
Dr. Carol Huang, ACH, Calgary
Dr. Peter Sargious, Internal Medicine, Calgary

Darcee Jakovljevic, Lethbridge
Vanya Mcgaffey, Lethbridge
Dr. Alison MacKay, Lethbridge
Carole Harnack, Medicine Hat
Dr. Adeel Azam, Medicine Hat

Glenda Moore, Diabetes, Obesity and Nutrition SCN
Kathy Dmytruk, Diabetes, Obesity and Nutrition SCN
Leta Philp, Diabetes, Obesity and Nutrition SCN
Appendix 4: References

Appendix 5: Provincial In-Patient Diabetes Management Initiative Pictogram

Guidelines for the Safe Management of Insulin Pump Therapy in Hospital Diabetes Obesity Nutrition SCN October, 2022

2015-10-28